A multi-dialectal dataset for German dialect ASR & dialect-to-standard speech translation

Verena Blaschke, Miriam Winkler, Constantin Förster, Gabriele Wenger-Glemser & Barbara Plank

LMU Munich, MCML & Bayerischer Rundfunk Interspeech | August 18, 2025

Introduction

Automatic speech recognition

typically: high-resource languages

standardized varieties of

Introduction

Automatic **speech** recognition

typically: high-resource languages

te-of-the-Art ASR Models to Swiss German Dialog

Victor Gillioz

rds dialect-inclusive recognition in a low-recour

are balanced corpora the

Dialectal Coverage And Generalization in Arabic Speech R Amirbek Djanibekov^{1*}, Hawau Olamide Toyin^{1*}

Raghad Alshalan² Abdullah Alitr² Hanan Aldarmaki per Understand Swiss German? An Automatic, Que A Corpus of Read and Spontaneous Upper Saxon German Evaluation

Amirbek Djanibek Djanibeko.

Raghad Alshalan² Abdullah Alitr² Hanan Evaluation

Raghad Alshalan² Abdullah Alitr² Hanan German Saxon German?

Raghad Alshalan² Abdullah Alitr² Hanan German Saxon German?

Raghad Alshalan² Abdullah Alitr² Hanan Saxon German?

Human Evaluation

Fival Linear Date of Read and Spontaneous Upper Saxon German Saxon Germa

Manah and Max

Voices Unheard: NLP Resources and Models for Yorùbá Regional D

Orevaoghene Ahia^{1,5} Anuoluwapo Aremu^{5,6} Diana Abagyan¹ Hila Gone

Speech Recognition for Greek Dialects: A Challenging Benchmark

ergan, ²Mengjie Qian, ¹Neasa Ní Chiaráin, ¹(Socrates Vakirtzian*1, Chara Tsoukala*2,3, Stavros Bompolas3, Katerina Mouzou1, Vivian Stam

Overview

1. Dialects in Bavaria

2. *Betthupferl* dataset

3. Benchmarking ASR models

4. Qualitative analysis

Dialects in Bavaria

- 3 dialect groups
- Mostly spoken, occasionally written (no orthography)
- Dialect speakers are interested in ASR systems with dialectal and especially with German output

Franconian

East FranconianNorth Bavarian

Alemannic

Swabian

Bavarian

- Central Bavarian
- South Bavarian

Differences between German + dialects

German & dialectal transcriptions of a Franconian sentence:

"Immediately, search for Mathilda's coin or I'll show you what's what!"

Small word-level differences (morphology and/or pronunciation)

Different words/phrases

Syntactic differences

- determiner + name
- possessives
- . . .

Overview

Dialects in Bavaria

2. *Betthupferl* dataset

3. Benchmarking ASR models

4. Qualitative analysis

Betthupferl dataset Data

- Good-night stories for children in German or dialects
- Read speech; professionally written & recorded

- 32–37 mins per administrative region (dialectal)
- 32 mins (Standard) German audio
- Total: 4.5 h

Betthupferl dataset

Transcriptions

- Sentence level (~4.3 s; 11–12 words)
- 1 dialectal & 1 German transcription per sentence
- Transcriber = native speaker of a Bavarian dialect & German

Overview

Dialects in Bavaria

2. Betthupferl dataset

3. Benchmarking ASR models

4. Qualitative analysis

Experiments

Set-ups

dialect audio

model hypothesis

German audio

comparison: German ASR

Experiments

Metrics

- CER spelling differences between standard & dialect
- WER, BLEU lexically/structurally similar outputs desired, also for translation! (BLEU only in paper)

Experiments

Models

Architectures

- Whisper language model decoding
- MMS connectionist temporal classification (CTC)
- XLS-R (fine-tuned for German ASR) CTC

Multiple sizes (more sizes & fine-tuned versions in paper)

Output language setting: German (no dialects available)

Quantitative results

Performance gap

German vs. dialectal audio (but no systematic differences across regions)

Larger models = better

• Distilled *turbo* also good

Dialect audio & decoder types

- Whisper outputs: closer to German
- German → German XLS-R & MMS (CTC):

 similarly distant to
 both German & dialect

Quantitative results

CTC models:
Output is closer to
dialect than German
on a character level

Overview

Dialects in Bavaria

2. Betthupferl dataset

3. Benchmarking ASR models

4. Qualitative analysis

Qualitative analyses – Human evaluation

Comparing ~600 of the best model's hypotheses (Whisper large-v3) to the German references:

• Meaning: Is the meaning fully preserved?

 $\rightarrow \mu = 3.9 \pm 1.1$

• Fluency: Does the output sound like fluent German?

$$\rightarrow \mu = 3.7 \pm 1.1$$

Likert scale: 1 = worst, 5 = best; 2–3 annotators / sentence

Moderately correlated w/ automatic metrics: $0.48 \le |p| \le 0.59$

• Higher when taking the mean of *meaning* and *fluency*: $0.53 \le |\rho| \le 0.63$ \rightarrow interplay

Qualitative analyses – Error analysis

Same ~600 sentences: (v) identical to German reference

different, but acceptable

different, and wrong

[German]	Sofort		Mathildas		Geldstück	suchen,	• • •
	Immediately	7	Mathilda's		coin	search	
[Dialect]	Sofort	da	Mathilda	ihr	Geldstückle	sung,	• • •
		the	Mathilda	her			
[ASR]	Sofort		Mathilda		Geldstück	lesung,	•••

Qualitative analyses – Error analysis

- Same ~600 sentences: () identical to German reference
 - different, but acceptable
 - (X) different, and wrong

Words/constructions that...

- are identical in German & the dialect: usually correct (86 %)
- differ only in terms of pronunciation/morphology: usually correct (75 %)
- lexically different: usually nonsense (63 %)
- syntactically different: usually like the dialectal structure (acceptability in German varies)

Common error source: incorrectly recognized word boundaries

Summary

- 4.5h of audio w/ dialectal & German transcriptions
- Help us close the performance gap between dialectal & German audio :)
- Lexical/syntactic differences between dialect & standard are a challenge, both for models and for automatic evaluation

- Repo with reference transcriptions, model hypotheses, annotation guidelines, annotations, code
 - Audio clips are shared by request
- Thank you!

Supplementary material

github.com/mainlp/betthupferl

Appendix Dataset stats

				Word	ls/sent	Lev dist	
Region/split	Speakers	Sent	Min	Dial	Std	Word	Char
Lower Franconia	1F, 1M	403	33	12.6 _{7.6}	12.5 _{7.6}	46 ₂₁	19 ₁₁
Upper Franconia	3 M	561	33	$9.1_{5.7}$	$9.0_{5.6}$	52_{22}	23 ₁₃
Middle Franconia	a 4M	371	36	$15.1_{8.9}$	15.28.8	57 ₂₀	23 ₁₁
Upper Palatinate	1F, 1M	394	34	$14.0_{9.0}$	13.98.9	5819	24 ₁₁
Lower Bavaria	2F, 1M	488	32	$10.8_{7.3}$	11.17.4	68_{21}	30_{12}
Upper Bavaria	1F, 2M	465	37	$11.8_{8.0}$	$12.1_{8.2}$	57 ₂₁	23 ₁₁
Swabia	1F, 1M	575	37	$10.5_{6.6}$	$10.7_{6.7}$	57 ₂₂	22 ₁₂
All dialects	6F, 13M	3 257	241	11.7 _{7.7}	11.8 _{7.8}	57 ₂₂	24 ₁₂
Std. German	6F, 7M	531	32		8.9 _{5.6}		
Full dataset	8F, 14M	3 788	273		11.4 _{7.6}		

Appendix

Differences between references & Error analysis

Proportion w. type	Hypothesis words				
Difference	Sent	Word		\odot	×
— (identical word)	97	45	86	4	10
Phonetic/morphological	96	47	75	5	20
Word splitting	41	4	54	10	36
Determiner + name	29	3	10	77	13
Word choice	23	2	8	30	63
Verb phrase construction	7	1	13	23	63
Word order	6	1	0	82	18
Dropped/fused pronoun	5	0	40	0	60
Possessive	2	0	0	57	43
Other	8	1	27	47	27

Appendix Human judgements

	Avg	IAA	Correlations (ρ , mean over annotators)					
	1118		Fluency	WER	CER	BLEU		
Meaning	3.9 _{1.1}	$0.76_{0.05}$	$0.73_{0.05}$	$-0.57_{0.03}$	$-0.56_{0.03}$	$0.48_{0.02}$		
Fluency	$3.7_{1.1}$	$0.75_{0.03}$		$-0.59_{0.04}$	$-0.56_{0.02}$	$0.51_{0.03}$		
Both	$3.8_{1.0}$	$0.83_{0.03}$		$-0.63_{0.04}$	$-0.61_{0.03}$	$0.53_{0.03}$		