

# Analyzing the effect of linguistic similarity on cross-lingual transfer: Tasks and experimental setups matter

Verena Blaschke,<sup>1</sup> Masha Fedzechkina,<sup>2</sup> Maartje ter Hoeve<sup>2</sup> ACL Findings | <sup>1</sup>LMU Munich & MCML, <sup>2</sup>Apple | July 2025

#### Motivation

- 7000+ languages in the world
  - Only a few of which are focused on in NLP research (Joshi+, 2020)
    - Only a few of which have training data available
- $\rightarrow$  Cross-lingual transfer



The State and Fate of Linguistic Diversity and Inclusion in the NLP World (Joshi et al., ACL 2020)



#### Motivation

- Given a target language, how do I select a good training language? Intuitively: pick a language/dataset that is in some way similar...
  - ... but in what way?
  - Prior work: either relatively few languages or NLP tasks (Philippy+, 2023)
  - Here: 263 languages, 3 NLP tasks, 10 similarity measures





Overview

Large-scale cross-lingual transfer experiments Correlations with similarity measures Practical takeaways for picking source languages

Overview

## Large-scale cross-lingual transfer experiments Correlations with similarity measures Practical takeaways for picking source languages

#### **NLP experiments**

#### POS tagging & dep. parsing

#### **Topic classification**

#### NLP experiments — grammatical tasks

POS tagging & dep. parsing

- Universal Dependencies
- 70 × 153 languages
- UDPipe 2 (mono- and multilingual) char/word embeddings)



#### **Topic classification**

#### NLP experiments — grammatical tasks

POS tagging & dep. parsing

- Universal Dependencies
- 70 × 153 languages
- UDPipe 2 (mono- and multilingual char/word embeddings)



LAS = labelled attachment score

### NLP Experiments — topic classification

#### POS tagging & dep. parsing

- Universal Dependencies
- 70 × 153 languages
- UDPipe 2 (mono- and multilingual char/word embeddings)

Topic classification

- SIB-200
- 194 × 194 languages
- MLPs → comparable & competitive
- Input representations
  - character n-grams
  - n-grams (transliterated text)
  - mBERT embeddings



## **NLP Experiments — topic classification**



SIB-200: A Simple, Inclusive, and Big Evaluation Dataset for Topic Classification in 200+ Languages and Dialects (Adelani et al., EACL 2024)

#### **Topic classification**

- SIB-200
- 194 × 194 languages
- MLPs  $\rightarrow$  comparable & competitive
- Input representations
  - character n-grams
  - n-grams (transliterated text)
  - mBERT embeddings



Overview

## Large-scale cross-lingual transfer experiments Correlations with similarity measures Practical takeaways for picking source languages

### **Similarity measures**

- Linguistic measures

  - **Lex**ical similarity
  - Phylogenetic relatedness
  - **Geo**graphic proximity
- Dataset measures
  - Character overlap
  - Word\* overlap (words, character trigrams, subword tokens)
  - **Size** of training split

#### Structural similarities: Grammar, syntax, phonology, phoneme inventory



Parsing (labelled attachment score)

Pearson's r

0.8

Mean correlation (*r*) over test languages



#### size pho inv geo syn gram gen lex char word\*



POS tagging (accuracy)



Topic classification (accuracy) — MLP with n-grams

Pearson's r





Topic classification (accuracy) — MLP with n-grams (transliterated)

Pearson's r





Topic classification (accuracy) — MLP with mBERT embeddings



Overview

## Large-scale cross-lingual transfer experiments Comparing transfer trends Practical takeaways for picking source languages

![](_page_17_Picture_4.jpeg)

## Picking source languages based on similarity measures

|                           | size          | pho     | inv     | geo  | syn  | gram | gen | lex | char | word* |
|---------------------------|---------------|---------|---------|------|------|------|-----|-----|------|-------|
| Top-1 source candidate    | ( <i>=</i> mc | ost sin | nilar l | angu | age) |      |     |     |      |       |
| POS                       | 29            | 15      | 14      | 15   | 10   | 12   | 9   | 10  | 15   | 12    |
| Parsing (LAS)             | 21            | 13      | 13      | 13   | 7    | 10   | 8   | 8   | 16   | 11    |
| Topics (n-grams)          | —             | 17      | 17      | 13   | 15   | 14   | 9   | 9   | 13   | 4     |
| Topics (n-grams, translit | .) —          | 13      | 13      | 11   | 11   | 10   | 7   | 7   | 20   | 3     |
| Topics (mBERT)            | —             | 12      | 11      | 10   | 9    | 8    | 8   | 8   | 12   | 9     |

![](_page_18_Figure_2.jpeg)

Mean performance loss in percentage points if picking the best training language according to one measure (instead of the overall best one)

![](_page_18_Picture_4.jpeg)

## Picking source languages based on similarity measures

|                                                  | cizo | nho | inv | 000 |      | aram | aon |    | ohar | word |  |
|--------------------------------------------------|------|-----|-----|-----|------|------|-----|----|------|------|--|
|                                                  | SIZE | μιο |     | geo | Syll | gram | gen |    | Chai | word |  |
| Top-1 source candidate (= most similar language) |      |     |     |     |      |      |     |    |      |      |  |
| POS                                              | 29   | 15  | 14  | 15  | 10   | 12   | 9   | 10 | 15   | 12   |  |
| Parsing (LAS)                                    | 21   | 13  | 13  | 13  | 7    | 10   | 8   | 8  | 16   | 11   |  |
| Topics (n-grams)                                 | -    | 17  | 17  | 13  | 15   | 14   | 9   | 9  | 13   | 4    |  |
| Topics (n-grams, translit.                       | ) —  | 13  | 13  | 11  | 11   | 10   | 7   | 7  | 20   | 3    |  |
| Topics (mBERT)                                   | -    | 12  | 11  | 10  | 9    | 8    | 8   | 8  | 12   | 9    |  |
| Top-3 source candidates                          |      |     |     |     |      |      |     |    |      |      |  |
| POS                                              | 25   | 7   | 7   | 5   | 3    | 4    | 5   | 4  | 7    | 5    |  |
| Parsing (LAS)                                    | 18   | 8   | 7   | 5   | 3    | 4    | 4   | 3  | 8    | 6    |  |
| Topics (n-grams)                                 | -    | 10  | 9   | 5   | 6    | 6    | 5   | 3  | 8    | 2    |  |
| Topics (n-grams, translit.                       | ) —  | 8   | 7   | 4   | 5    | 5    | 3   | 3  | 14   | 1    |  |
| Topics (mBERT)                                   | —    | 6   | 5   | 4   | 4    | 4    | 4   | 4  | 5    | 6    |  |

Mean performance loss in percentage points if picking the best training language according to one measure (instead of the overall best one)

![](_page_19_Picture_3.jpeg)

### Picking source languages based on other transfer experiments?

![](_page_20_Figure_1.jpeg)

Mean performance loss in percentage points if picking the best training language according to the results of another transfer experiment (instead of the overall best one)

![](_page_20_Picture_3.jpeg)

#### Conclusions

- Different tasks/input representations
  → different similarity measures matter
- Selecting training languages based on relevant similarity measures (or on similar experiments) works well
  - If possible: compare multiple promising training languages

#### More details in the paper :)

![](_page_21_Picture_5.jpeg)

TM and © 2025 Apple Inc. All rights reserved.

![](_page_22_Figure_1.jpeg)