
Navigable atom-rule interactions in PSL models
enhanced by rule verbalizations, with an
application to etymological inference

Verena Blaschke, Thora Daneyko, Jekaterina Kaparina,
Zhuge Gao & Johannes Dellert

ILP 2022, Windsor (UK), September 29, 2022

University of Tübingen

Probabilistic soft logic1

▶ Templating language for a probabilistic graphical model
(hinge-loss Markov random fields)

▶ First-order logic + statistics

▶ Used for modelling relation graphs – in our case in the context
of historical linguistics

1Bach, S. H., Broecheler, M., Huang, B., & Getoor, L. (2017). “Hinge-Loss
Markov Random Fields and Probabilistic Soft Logic.” JMLR 18(109)

Proto-Germanic

Proto-
North-Germanic

SwedishDanish

Proto-West-
Scandinavian

NorwegianIcelandic

Proto-
West-Germanic

Old English

EnglishDutchGerman

Proto-Germanic

Proto-
North-Germanic

SwedishDanish

Proto-West-
Scandinavian

NorwegianIcelandic

Proto-
West-Germanic

Old English

EnglishDutchGerman

Proto-Germanic

Proto-
North-Germanic

Swedish
ta

Danish
tage

Proto-West-
Scandinavian

Norwegian
ta

Icelandic
taka

Proto-
West-Germanic

Old English

English
take

Dutch
nemen

German
nehmen

PSL atoms

▶ Atom
Inherited(X,Y), Borrowed(X,Y), UnknownOrigin(X),
Similar(X,Y), ...

▶ Ground atom
Inherited("English ‘take’", "Old English ‘...’")

Borrowed("Old English ‘...’",

"Proto-North-Germanic ‘...’")

UnknownOrigin("Proto-West-Germanic ‘...’")

Similar("English ‘take’", "Norwegian ‘ta’") = 0.7
...
→ We want to assign scores ∈ [0; 1] to the ones whose values
are initially undefined

PSL rules

▶ Logical rules
Disjuncts of literals, can be written as implications of the form

P1(A,B) & P2(A,B) -> P3(A,B) | P4(A,B)

Inherited(X,Z) & Inherited(Y,Z) & (X != Y)

-> Similar(X,Y)

▶ Arithmetic rules: (in)equalities
Similar(X,Y) = Similar(Y,X) .

Borrowed(X,Y) + Borrowed(Y,X) <= 1 .

Inherited(X,+Y) + Borrowed(X,+Z)

+ UnknownOrigin(X) = 1 .

▶ Ground rules: where all atoms are ground atoms
Similar("German ‘nehmen’","Dutch ‘nemen’") =

Similar("Dutch ‘nemen’","German ‘nehmen’") .

Distance to satisfaction

▶ Arithmetic rules are satisfied if their (in)equalities are fulfilled

▶ Logical rules are satisfied if the consequent’s score is at least
as high as the antecedent’s score:
▶ Lukasiewicz logic, e.g. conjunction:

A & B := max{A + B − 1, 0}
Inherited(X,Z) & Inherited(Y,Z) & (X != Y)

-> Similar(X,Y)

Inherited("German ‘nehmen’","P-W-Gmc ‘...’") 0.9
& Inherited("Dutch ‘nemen’","P-W-Gmc ‘...’") 0.8
& ("German ‘nehmen’" != "Dutch ‘nemen’") 1.0
-> Similar("German ‘nehmen’","Dutch ‘nemen’") 0.9

Distance to satisfaction

▶ Arithmetic rules are satisfied if their (in)equalities are fulfilled

▶ Logical rules are satisfied if the consequent’s score is at least
as high as the antecedent’s score:
▶ Lukasiewicz logic, e.g. conjunction:

A & B := max{A + B − 1, 0}
Inherited(X,Z) & Inherited(Y,Z) & (X != Y)

-> Similar(X,Y)

Inherited("German ‘nehmen’","P-W-Gmc ‘...’") 0.9
& Inherited("Dutch ‘nemen’","P-W-Gmc ‘...’") 0.8 0.7

& ("German ‘nehmen’" != "Dutch ‘nemen’") 1.0 ≤
-> Similar("German ‘nehmen’","Dutch ‘nemen’") 0.9

✔

Distance to satisfaction

Inherited("Icelandic ‘taka’","P-W-Sca ‘...’") 0.9
& Inherited("Norwegian ‘ta’","P-W-Sca ‘...’") 0.9 0.8

& ("Icelandic ‘taka’" != "Norwegian ‘ta’") 1.0 ≤
-> Similar("Icelandic ‘taka’","Norwegian ‘ta’") 0.7

✗

▶ Distance to satisfaction: How unsatisfied is a rule?
max{antecedent score - consequent score, 0}
(arithmetic constraints are a natural extension)

Distance to satisfaction

▶ Distance to satisfaction: How unsatisfied is a rule?
max{antecedent score - consequent score, 0}
(arithmetic constraints are a natural extension)

▶ Rules can be constraints (that should always be satisfied) or
weighted according to how much their dissatisfaction should
be penalized
▶ Rule weights can be learned!

▶ PSL inference goal: assign atom values in such a way that the
weighted sum of distances to satisfaction is minimized (MAP
estimate)

RAG

Rule-atom graph

Inherited

ToSimilar1

Inherited

ToSimilar2

Symmetric

Similar1

...

Inherited("German ‘nehmen’",

"P-Gmc ‘...’")

Inherited("Dutch ‘nemen’",

"P-Gmc ‘...’")

Similar("German ‘nehmen’",

"Dutch ‘nemen’")

Inherited("Danish ‘tage’",

"P-N-Gmc ‘...’")

...

Very large → hard to interpret

Existing debugging tool: VMI-PSL2

▶ (Largely) focused on analyzing rules (aggregate
(dis)satisfaction, number of groundings)

▶ Our approach: focus on ground atoms (examine atoms with
surprising/undesired inferred values)

2Rodden, A., Salh, T., Augustine, E., & Getoor, L. (2020). “VMI-PSL:
Visual Model Inspector for Probabilistic Soft Logic.” RecSys ’20, pp. 604–606.
Graphic via supplementary material (demo video)

Our RAG inspection tool

Inherited("Old English ‘...’", "P-West-Germanic ‘...’")

Atom sorting/filtering

Rules and associated atoms

Upward/downward pressure

Upward/downward pressure

▶ Each rule-atom link exerts upward and/or downward pressure
on the value of the atom

Inherited(X,Z) & Inherited(Y,Z) & (X != Y)

-> Similar(X,Y)

▶ If unsatisfied:
▶ upward pressure on the value of Similar(X,Y)
▶ downward pressure on Inherited(X,Z) and Inherited(Y,Z)

Upward/downward pressure

Inherited(X,Z) & Inherited(Y,Z) & (X != Y)

-> Similar(X,Y)

▶ If satisfied: potentially relevant for explaining
▶ why Similar(X,Y) receives a higher value than expected
▶ why Inherited(X,Z) or Inherited(Y,Z) receives a lower

value than expected

Upward/downward pressure

Borrowed(X,Y) + Borrowed(Y,X) <= 1 .

▶ If unsatisfied:
▶ downward pressure on Borrowed(X,Y) and Borrowed(Y,X)

Rule activity

Rule activity

▶ A ground rule is active with respect to a ground atom if
▶ it is dissatisfied (changing the atom’s value in the direction of

the rule pressure would alleviate the dissatisfaction)
▶ it would be dissatisfied if the atom’s value were changed

slightly (against the rule pressure) – counterfactual test

▶ Typically, most ground rules will be inactive for any given
atom

▶ Only active rules actually contribute to the MAP estimate and
therefore its explanation

▶ If many groundings of some rule turn out to be inactive,
▶ its reasoning pattern is already covered by (a combination of)

other rules, which might mean the rule is not needed, or
▶ the rule needs to be adjusted in order to increase its influence

on the results

Atom & rule verbalization

Atom verbalization

Rule verbalization

Rule verbalization

▶ Expressing the mechanics of each ground rule in terms of
domain-specific natural language

▶ Templates for various scenarios
▶ Which position within the rule does the inspected atom have?
▶ Upwards/downwards pressure

Rule verbalization

Inherited(X,Z) & Inherited(Y,Z) & (X != Y)

-> Similar(X,Y)

Inherited("German ‘nehmen’", "P-West-Gmc ‘...’") 0.9
& Inherited("Old Eng ‘...’", "P-West-Gmc ‘...’") 0.1 0.0

& ("German ‘nehmen’" != "Old Eng ‘...’") 1.0
-> Similar("German ‘nehmen’", "Old Eng ‘...’") 0.4

Rule verbalization

Expressing the mechanics of each ground rule in terms of
domain-specific natural language

Inherited(X,Z) & Inherited(Y,Z) & (X != Y)

-> Similar(X,Y)

▶ Introductory sentence summarizing the reasoning pattern
expressed by the rule
“If two words are inherited from the same source word, they
should be phonetically similar.”

Rule verbalization

Inherited("German ‘nehmen’", "P-West-Gmc ‘...’") 0.9
& Inherited("Old Eng ‘...’", "P-West-Gmc ‘...’") 0.1
& ("German ‘nehmen’" != "Old Eng ‘...’") 1.0
-> Similar("German ‘nehmen’", "Old Eng ‘...’") 0.4

▶ Introductory sentence
“If two words are inherited from the same source word, they
should be phonetically similar.”

▶ Then fill in specifics of grounding & inference
“However, since it is very likely that German ‘nehmen’ was
inherited from Proto-West-Germanic, but it is very unlikely
that the Old English word was as well, the similarity score is
actually not constrained.”

Rule verbalization

Inherited("German ‘nehmen’", "P-West-Gmc ‘...’") 0.9
& Inherited("Old Eng ‘...’", "P-West-Gmc ‘...’") 0.1
& ("German ‘nehmen’" != "Old Eng ‘...’") 1.0
-> Similar("German ‘nehmen’", "Old Eng ‘...’") 0.4

▶ Introductory sentence
“If two words are inherited from the same source word, they
should be phonetically similar.”

▶ Then fill in specifics of grounding & inference
“Since it is very likely that German ‘nehmen’ was inherited
from Proto-West-Germanic, but the German and Old English
words are moderately dissimilar, it should be at least
somewhat unlikely that the Old English word comes from the
same source.”

Code can be used for any PSL model:
▶ github.com/jdellert/psl-infrastructure

▶ Java API for defining/running PSL inferences
▶ Rule-atom graph analysis tools (rule pressure, rule activity,

verbalizations)
▶ (More PSL tools released and to come: inference

parallelization, model evaluation, ...)

▶ github.com/verenablaschke/psl-ragviewer
▶ GUI

Thank you!
Questions?

github.com/jdellert/psl-infrastructure
github.com/verenablaschke/psl-ragviewer

verena.blaschke@cis.lmu.de
johannes.dellert@uni-tuebingen.de

This work is part of a project that has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (CrossLingference, grant agreement no. 834050).

Appendix

Etymological inference: predicates

Closed predicates:

InheritancePoss(X,Y) lang of Y is parent of lang of X
BorrowingPoss(X,Y) lang of Y influenced lang of X

Open predicates used for reasoning:

Homologue(X,H) belief that word X belongs to homologue set H
Similar(X,Y) phonetic similarity of the words X and Y

(already known for pairs of modern words)

Open predicates for encoding etymologies (= the inference result):

Inherited(X,Y) belief that X was inherited Y
Borrowed(X,Y) belief that X was borrowed from Y
UnknownOrigin(X) belief that etymology of X is outside scope

Etymological Inference: constraints and priors

Homologue set assignment for each form is a distribution:

Homologue(X,+H) = 1.

Form similarity is symmetric and (roughly) transitive:

Similar(X,Y) = Similar(Y,X) .

(X != Y) & (X != Z) & (Y != Z) &

Similar(X,Y) & Similar(Y,Z) -> Similar(X,Z) .

Weak negative prior on borrowing (= prefer inheritance by default):

0.5: !Borrowed(X,Y)

Strong negative prior on unknown (= try hard to find etymology):

2.5: !UnknownOrigin(X)

Etymological Inference: rules

Belief assigned to etymologies for each form is a distribution:

Inherited(X,+Y) + Borrowed(X,+Z) + UnknownOrigin(X) = 1 .

Borrowing is monodirectional:

Borrowed(X,Y) + Borrowed(Y,X) <= 1 .

Etymological links are only possible between homologues:

Inherited(X,Y) & Homologue(Y,H) -> Homologue(X,H).

Borrowed(X,Y) & Homologue(Y,H) -> Homologue(X,H).

Etymological inference: rules
Strong preference for two words which are inherited from the same
word to be phonetically similar:

2.0: Inherited(X,Z) & Inherited(Y,Z) & (X != Y)

-> Similar(X,Y)

All pairs of inherited words are at least as similar as their parents
(preventing forms from becoming more similar with time):

1.0: Similar(X,Y) & Inherited(X,W) & Inherited(Y,Z)

& (W != Z) -> Similar(W,Z)

A loan should be more similar to its source than to any other word:

1.0: Borrowed(X,Y) & Similar(X,Z) & (Y != Z) & (X != Z)

-> Similar(X,Y)

Etymological inference: rules

Evidence of homologue set presence is propagated along
parent-child links, with the child-to-parent direction being
dominant:

0.6: Homologue(X,H) & InheritancePoss(X,Z)

-> Homologue(Z,H)

0.2: Homologue(Z,H) & InheritancePoss(X,Z)

-> Homologue(X,H)

Etymological inference: rules

If parent and child are homologues, that suggests inheritance:

0.4: Homologue(X,H) & Homologue(Y,H)

& InheritancePoss(X,Y) -> Inherited(X,Y)

By contrast, if there is any reason to doubt the presence of a
homologue set in the parent, an available loanword etymology
becomes much more likely:

1.0: Homologue(X,H) & !Homologue(Y,H) &

InheritancePoss(X,Y) & BorrowingPoss(X,Z)

-> Borrowed(X,Z)

	PSL
	Rule-Atom Graph Inspection
	Appendix

